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LETTER TO THE EDITOR 

Observation of non-exponential relaxation above TN in 
the dilute Heisenberg antiferromagnet KMno.3Nio.,F3 

R G Lloyd? and P W Mitchell$ 
‘f Institut Laue-Langevin, BP 156X, 38042 Grenoble-Ctdex, France 
$ Department of Physics, University of Manchester, Manchester M13 9PL, UK 

Received 31 May 1989 

Abstract. We investigate the dynamics above T, (210 K) of the dilute Heisenberg anti- 
ferromagnet KMQ,~N&,,F~ using neutron inelastic scattering. We find evidence for a long- 
time tail in the relaxation function at all temperatures above T, with relaxation being much 
slower at and below the so-called Griffiths temperature TG (246 K) which is the ordering 
temperature of pure KNiF3. This is as predicted by recent theoretical studies. 

Recently theoretical studies of dilute magnetic systems investigating plausible mech- 
anisms for relaxation have predicted non-exponential forms for the long-time dynamics 
above the ordering temperature. 

One approach [l-41 to this problem has concentrated on the dominance of the long- 
time dynamics of clusters of spins which are below their ordering temperature and makes 
a distinction between two kinds of behaviour depending on whether the system is above 
or below its so-called Griffiths temperature TG, which is the ordering temperature of the 
corresponding pure system. This corresponds to the presence or absence of Griffiths 
singularities in the free energy as a function of applied magnetic field H ,  at H = 0 [SI. 
Non-exponential decay in the spin-spin correlation function C(t) = [(Si(t)S,(0))] then 
emerges as the dynamical signature of the ‘Griffiths phase’. This arises because of non- 
trivial contributions to the correlation function from large, statistically rare, quasi- 
ordered regions of the system whose relaxation is only limited by finite-size effects. 
Calculations have been performed both for Ising (m = 1) and vector (m > 1) systems. 
These phenomena have been investigated in computational simulations [ 6 , 7 ]  and a 
preliminary experimental study has been performed [8]. However, the results of these 
are inconclusive and they fail to distinguish between the ‘Griffiths’ phase and the 
paramagnetic phase. The long-time tails are analogous to those found in the problem of 
the density of states of an electron in a random potential [9] and the problem of a random 
walk with traps at random positions [lo]. 

For Heisenberg (m = 3) systems below TG the theory predicts the asymptotic t+ w 

form for C(t) to be 

~ ( t )  - exp[ - ( ~ t )  lI2] 

B - ( T  - T c ) % + z r v r  

(1) 

(2) 

the parameter B being found to vanish as T+ Tc as 

where a,, v, and z ,  are the usual critical exponents for the random system. 
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At and above TG the asymptotic form is 

C(t) - exp[ - rd/(d+z~)g(t/g$+z~)] 

C(t) - exp( - cg$)  exp( - t/g;p). 

(3) 
with g(x) a scaling function. For t / g ; + z ~  9 1, i.e. above TG and out of the critical region 
for the pure system, this is 

(4) 
In the opposite limit, i.e. t/l$+zp 
the prediction is 

1, which, in particular, is true in the vicinity of TG, 

~ ( t )  - exp( - tdId+lp) 

which is 

C(t) - exp(-t2I3) ( 5 )  
ford = 3 and zp = 1. 

There are two main questions which the theory does not address. The first is the time 
regime for which the theory is expected to hold (it is not correct for short times) and thus 
the size of the correlation function in the region of applicability of the theory. Secondly 
the effect of the details of the dynamics on the applicability of the theory to real magnetic 
systems is not clear, model A [ 111 relaxational dynamics with no conservation laws being 
assumed in Bray’s work [4] (at least below TG). 

For these reasons it is of interest to try to measure directly the relaxational dynamics 
to see whether these tails are visible experimentally in a real magnetic system. We have 
used neutron inelastic scattering as a probe of the power spectrum of the spin fluctuations 
F(q,  U )  which is the time Fourier transform of the calculated quantity C(t). A non- 
exponential tail in C(t) should appear at each q in F(q,  U).  

We have investigated these effects using the isotropic, short-range Heisenberg anti- 
ferromagnetic KMnl-,Ni,F3. The transition temperature of the system varies with 
composition from 88-246 K as x goes from 0 to 1. The crystal structure is perovskite and 
thus the magnetic ions lie on a simple cubic lattice. The single crystal we used had x = 
0.7 with TN = 210 ? 2 K and was previously investigated by Cowley and Carneiro [12]. 
It shows some smearing in its transition temperature which corresponds to a small 
amount of chemical inhomogeneity, which for our purposes is irrelevant as we did not 
intend to measure with precision any temperature dependences or critical exponents. 

The experiments were performed using the triple-axis spectrometers IN12 and IN3 
at the ILL, with pyrolytic graphite for both monochromators and analysers. On IN12 
the experiments were performed with a fixed incident wavevector of 1.05 A-‘ to give a 
resolution in energy of 8 GHz. The collimation was60’, 60’, 60’ for the monochromator- 
sample, sample-analyser and analyser-detector respectively. A beryllium filter was used 
on the incident beam to remove the higher-order contamination. On IN3 a fixed final 
wavevector of 2.662 A-’ was used to give an energy resolution of 164 GHz and a graphite 
filter was used on the scattered beam to remove the higher-order contamination. For 
the IN3 measurements the collimation was 60’, 40’, 40’ for the monochromator-sample, 
sample-analyser and analyser-detector respectively. The sample was mounted in a 
variable-temperature cryostat with the [0, 1, i ]  direction vertical and scans in energy 
transfer were performed at various temperatures above TN at a fixed wavevector transfer 
of (0.48,0.48,0.48) rlu close to the magnetic zone centre (0.5,0.5,0.5) rlu. 

Comparison of the scans taken at the same temperature but at different resolutions 
allowed us to probe relaxation processes on different time scales. The IN3 data are 
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shown later in figure 1, and the higher-resolution IN12 data are shown later in figures 2 
and 3. The full curves show the same model function fitted to both sets of data. 

To analyse our data we define a counting rate (per monitor count) at the detector 

J ( q 0 , o o )  = l o /  / -~d3qdwS(q ,w)R(q-qo ,  w - w o )  (6)  
all q-space 

where following [ 131 we define the resolution function for the three-axis spectrometer 
as a quadratic form 

R(q  - qo,  w - wo) = Ro exp( - LMx) (7) 

where x = (q - qo, w - wo)  and, M = M(qo, wo) is a symmetric matrix whose elements 
are given in [13] in terms of the instrumental parameters. 

For a system of magnetic spins we make the usual factorisation into a static wave- 
vector-dependent susceptibility and a normalised spectral weight function or power 
spectrum 

where F(w) is normalised so that 

dm F(q, w) = 1 (9) 

and n(w)  is the Bose population factor, which is slowly varying on the scale of the 
resolution and can be factorised out of the integral. Thus we have 

VF is a factor given in equation (18) of [14] relating to the resolution volume of the 
secondary spectrometer. It is of importance for scans at constant incident wavelength 
and has the form 

VF cc k: cot 8 A  (11) 

where 8, is the scattering angle at the analyser. It is the reason for the asymmetry of the 
scans in figure 2. The factor lo is a constant containing quantities such as the incident 
neutron flux and the effective volume of the sample and we treat it as being constant for 
scans taken on the same spectrometer under the same resolution conditions, but allow 
it to vary in order to normalise the data sets taken under different resolution conditions. 

Under the conditions of this experiment, x,' varies slowly on the scale of the reso- 
lution function, so that the q integrals can be performed analytically to give 

i.e. the four-dimensional resolution integral has been reduced to a one-dimensional 
convolution in energy. The value of the resolution width in energy (M&1)1/2 was 
measured using a vanadium sample which is an incoherent elastic scatterer. 
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We rewrite equation (12) as an integral over time with the spectral weight function 
F(q,  w )  defined in the time domain 

where 

R(t )  = d w  exp(-w2/2M&’) exp(-iwt) il: 
= V(2n)  V ( M ; ~ )  exp( - t2~&l /2 ) .  (14) 

We perform the Fourier transform, equation (13), using a model spin-spin correlation 
function C(t) and a fast-Fourier transform, and we compare the calculated values of 
J(qo, wo) with our measured values. We then fit parameters defined within C(t) using a 
maximum likelihood fitting routine, assuming the neutron counts to be distributed 
according to the Poisson probability distribution. 

The theory predicts a stretched exponential form for the long-time limit of the spin- 
spin correlation function. For shorter times we do not expect it to have this form. For 
the intermediate time regime we assume a spin diffusive form. Thus we can define a 
staggered magnetisation density which follows the laws of hydrodynamics, the dynamics 
being determined by expansions of various currents and densities and by conservation 
laws. This approach gives C(t) - exp( - t/z), where z is a phenomenological relaxation 
time. At very short times we assume that this breaks down and that the spins have a 
finite ‘decorrelation time’ which causes the correlation function to fall off much more 
slowly. We approximate this by assuming C(t) = 1.0 up to a cut-off time to (the dis- 
continuity in the gradient of C(t) that this involves is effectively filtered out as a high- 
frequency transient in the Fourier transform procedure). The value of tocan be estimated 
as the inverse of the highest spin-wave or phonon frequency in the crystal depending on 
the details of the spin dynamics, i.e. whether they are dominated by spin-wave or phonon 
processes. We find a finite value of to to be necessary to fit our data at high frequencies. 

In detail we analysed our data with a sum of two relaxation functions 

exp( - t / z )  + A  exp[ - (B t )B]  +Acp 
t>to 

= 1.0 t<to. 
C(q’t) = exp(- to / t )+Aexp[- (Bto)~]+Acp (15) 

Note that C(q, 0) = 1.0 ensures the normalisation of the spectral weight function. The 
first exponential decay is from spin diffusion and the second is the long-time tail. The 
constant A,, is to describe any relaxation processes which are beyond our energy 
resolution, i.e. they form a magnetic contribution to a resolution-limited central peak. 
We find all three parts to be necessary to describe our data. 

There are two main sources of background in an experiment like this. First there is 
a so-called room background which arises because of gamma rays and neutrons not 
coming through the spectrometer and because of noise in the electronics of the counting 
chain. This is very small (-2 counts per million on IN12) and is added to J ( q ,  w). 
Secondly there is a background due to nuclear incoherent scattering from the sample. 
This is strictly elastic and it is assumed to be isotropic, any temperature andq-dependence 
only coming from the Debye-Waller factor [15]. At our small wavevector transfers it is 
to a good approximation constant. It gives rise to a resolution-limited central peak in 
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Table 1. The parameters obtained from fitting the model function defined in equation (15) 
to the data as explained in the text. Parameters without errors were fixed in the fits. x2 is a 
measure of the goodness of the fit. 

T(K) x p  z (10-'2s) p A ,  B(THz) A X 2  

280 1.27 0.82 1.0 O.OOO(2) 0.018(2) 0.038(2) 3.92 
0.87'8:; 0.0 0.02(1) 0.04(2) 3.92 

260 1.92 1.06 1.0 0.002(3) 0.008(1) 0.046(2) 4.15 
0.5018:;; 0.0 0.012(4) 0.07(1) 3.73 

240 3.38 1.41 1.0 0.013(2) 0.016(2) 0.028(2) 2.80 
0.23'::;: 0.0 0.1(3) 0.11(9) 3.19 
0.667 0.012(2) 0.025(5) 0.040(2) 2.85 

225 6.45 2.09 1.0 0.013(1) 0.031(5) 0.035(4) 2.56 
0.30'8.;; 0.0 0.03(6) 0.07(4) 5.04 
0.5 0.013(1) 0.15(4) 0.11(3) 2.63 

220 8.08 2.42 1 .o O.Oll(1) 0.039(9) 0.044(9) 1.90 
0.3418,;; 0.0 0.03(5) 0.06(3) 4.25 
0.5 O.Oll(1) 0.2(1) 0.15(6) 1.85 

Figure 1. Data taken at various tem- 
peratures above TN with a fixed final 
wavevector of 2.662 A-'. ., 220 K; 0, 

1 230 K, 0 ,240  K; 0 ,260 K; A ,  280 K. lo3  
1,5 monitor counts corresponds to approxi- 

mately3 minutes counting time. q = (0.48, 
-1.5 -1.0 -0.5 0 0.5 1 .o 

Energy ( T H z l  0.48,0.48) rlu. 

the measured power spectrum, the height of which should be independent of both q and 
temperature. In our analysis it is treated as a constant additive background to C(q, t ) ,  
which was measured in scans well above TN. The value of this enabled us to cross- 
normalise the two data sets and thus to use common fitted parameters in C(t ) .  

The value of to was used as a fitting parameter in the widest of our low-resolution 
scans and found to be 0.65 ? 0.1 X s. It was then left constant in the fits. For the 
low-resolution data the parameters z, Z, and A,, were allowed to vary with A = 0, 
because any long-time tail is resolution limited in this case. Defining xq to be 1.0 at T = 
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Figure 2. Data taken at various temperatures 
above TG, with a fixed incident wavevector of 
1.05 A-': (a) T = 280 K, (b)  T = 260 K. The full 
curves are the best fits to the model function 
including an exponential tail and the broken 
curves are calculated values assuming consistency 
with the data in figure 1, but with no long-time 
tail. q = (0.48,0.48,0.48) rlu. 

Figure 3. Data taken at various temperatures 
below TG. (a) T =  240K, ( b )  T =  225K, (c) 
T = 220 K. Curve markings as in figure 2. 

290 K we were thus able to find values for xa and z at all the temperatures measured. 
The values obtained in this way were used in the fits to the high-resolution data to obtain 
values for the parameters p ,  B ,  A and A,, (the values of either p or A,, were fixed in the 
fits). The scans were cross-normalised by using different values for Io ,  which were found 
to be 0.47 x lo4 for the IN3 data and 0.35 x lo7 for the IN12 data. Parameter sets 
obtained in this way are shown in table 1, together with a x 2  merit function to show the 
relative quality of the fits at each temperature. The model function was then recalculated 
with these parameters for the low-resolution data to ensure consistency. The results of 
these calculations together with the data are shown in figure 1. 

The data clearly show the existence of a long-time tail at all temperatures above TN 
for which we have data. This can be seen for the scans above T G  in figure 2 and for the 
scans below T G  in figure 3. The broken curves in figures 2 and 3 show a calculated 
function without the presence of the second term in the model function, the spin diffusive 
term appearing as a flat background at this high resolution. At and below T G  there is 
also evidence for the existence of slower relaxation which was beyond the energy 
resolution of our experiment. However, we are able to assign it a relative weight with 
the parameter Acp. In this way we can see a qualitative difference in the scans above and 
below T G ,  
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In the fits there are significant correlations between the values of p, B and A and so 
obtaining a unique set of values is not possible from our data. For this reason we show 
several sets of possible parameters in table 1. However, we are able to draw several 
qualitative conclusions from the fits. The data above T G  seem to be well described by a 
single exponential tail as in equation (4) with a time constant which is a decreasing 
function of T - T G .  We do not see evidence for the exponentially decreasing amplitude 
in equation (4). At and below T G  we see evidence for slow relaxation which we do not 
resolve, whose weight is roughly constant throughout the Griffiths phase. The tail that 
we do observe presumably forms part of a pre-asymptotic regime and is well described 
by a stretched exponential relaxation function. In the absence of any theoretical under- 
standing of this regime it is difficult to draw any conclusions from the values of the fitted 
parameters, apart from the fact that approximately 10% of the spectral weight lies in 
this long-time tail thus introducing significant corrections to xq over a purely spin- 
diffusive picture. 

In conclusion we have measured the power spectrum of the spin fluctuations above TN 
in the Heisenberg antiferromagnet KMn0,3N&,7F3, using two experimental resolutions to 
separate relaxation processes occurring on different timescales. We find evidence for 
the existence of a long-time tail above and below T G ,  with relaxation which is much 
slower below T G  than above T G .  

We wish to thank L D Cussen for experimental assistance with some of the IN12 
experiments, R A  Cowley for the loan of the crystal and A J Bray for helpful comments 
on the manuscript. This work was stimulated by discussions with M A Moore, A J Bray 
and G J Rodgers. 
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